Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.585
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(3): 9, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466282

RESUMO

Purpose: RDH12 is among the most common genes found in individuals with early-onset severe retinal (EOSRD). Adaptive optics scanning light ophthalmoscopy (AOSLO) enables resolution of individual rod and cone photoreceptors in the retina. This study presents the first AOSLO imaging of individuals with RDH12-associated EOSRD. Methods: Case series of patients who attended Moorfields Eye Hospital (London, UK). Spectral-domain optical coherence tomography, near-infrared reflectance (NIR), and blue autofluorescence imaging were analyzed. En face image sequences of photoreceptors were recorded using either of two AOSLO modalities. Cross-sectional analysis was undertaken for seven patients and longitudinal analysis for one patient. Results: Nine eyes from eight patients are presented in this case series. The mean age at the time of the assessment was 11.2 ± 6.5 years of age (range 7-29). A subfoveal continuous ellipsoid zone (EZ) line was present in eight eyes. Posterior pole AOSLO revealed patches of cone mosaics. Average cone densities at regions of interest 0.5° to the fovea ranged from 12,620 to 23,660 cells/mm2, whereas intercell spacing ranged from 7.0 to 9.7 µm. Conclusions: This study demonstrates that AOSLO can provide useful high-quality images in patients with EOSRD, even during childhood, with nystagmus, and early macular atrophy. Cones at the posterior pole can appear as scattered islands or, possibly later in life, as a single subfoveal conglomerate. Detailed image analysis suggests that retinal pigment epithelial stress and dysfunction may be the initial step toward degeneration, with NIR being a useful tool to assess retinal well-being in RDH12-associated EOSRD.


Assuntos
Oftalmopatias Hereditárias , Retina , Distrofias Retinianas , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Estudos Transversais , Retina/diagnóstico por imagem , Distrofias Retinianas/diagnóstico por imagem , Distrofias Retinianas/genética , Tomografia de Coerência Óptica , Oxirredutases do Álcool/genética
2.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551495

RESUMO

Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.


Assuntos
Oxirredutases do Álcool , Proteínas de Caenorhabditis elegans , Gotículas Lipídicas , Homeostase , Lipase/genética , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos , Lipólise/fisiologia , Proteínas/metabolismo , Caenorhabditis elegans , Animais , Oxirredutases do Álcool/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
3.
Biochem Biophys Res Commun ; 709: 149809, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552555

RESUMO

Hyperuricemia is a chronic metabolic disease caused by purine metabolism disorder. And several gene loci and transporter proteins that associated with uric acid transport functions have been identified. Retinol Dehydrogenase 12 (RDH12), recognized for its role in safeguarding photoreceptors, and our study investigated the potential impact of Rdh12 mutations on other organs and diseases, particularly hyperuricemia. We assessed Rdh12 mRNA expression levels in various tissues and conducted serum biochemical analyses in Rdh12-/- mice. Compared with the wild type, significant alterations in serum uric acid levels and kidney-related biochemical indicators have been revealed. Then further analysis, including quantitative RT-PCR of gene expression in the liver and kidney, highlighted variations in the expression levels of specific genes linked to hyperuricemia. And renal histology assessment exposed mild pathological lesions in the kidneys of Rdh12-/- mice. In summary, our study suggests that Rdh12 mutations impact not only retinal function but also contribute to hyperuricemia and renal disease phenotypes in mice. Our finding implies that individuals with Rdh12 mutations may be prone to hyperuricemia and gout, emphasizing the significance of preventive measures and regular examinations in daily life.


Assuntos
Hiperuricemia , Camundongos , Animais , Hiperuricemia/genética , Ácido Úrico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Fenótipo
4.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
5.
Sci Rep ; 14(1): 5932, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467766

RESUMO

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.


Assuntos
Oxirredutases do Álcool , Furaldeído/análogos & derivados , Peróxido de Hidrogênio , Polyporaceae , Trametes , Trametes/genética , Trametes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredução , Glioxal
6.
Artigo em Inglês | MEDLINE | ID: mdl-38464914

RESUMO

Background: L-2-hydroxyglutaric aciduria (L2HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by pathogenic variants in the L2HGDH gene which encodes mitochondrial 2-hydroxyglutarate dehydrogenase. Here, we report a case of L2HGA in a Mexican-Mayan patient with a homozygous mutation at L2HGDH gene and clinical response to vitamin supplements and levocarnitine. Case report: A 17-year-old, right-handed female patient with long-term history of seizures, developmental delay and ataxia was referred to a movement disorders specialist for the evaluation of tremor. Her brain MRI showed typical findings of L2HGA. The diagnosis was corroborated with elevated levels of 2-hydroxyglutaric acid in urine and genetic test which revealed a homozygous genetic known variant c.569C>T in exon 5 of L2HGDH gene. She was treated with levocarnitine and vitamin supplements, showing improvement in tremor and gait. Discussion: To our knowledge this is the first report of a Mexican patient with L2HGA. This case adds information about a rare condition in a different ethnic group and supports the findings of other authors which encountered symptomatic improvement with the use of flavin adenine dinucleotide (and its precursor riboflavin), and levocarnitine. Highlights: We report the first case of Mexican-Mayan patient with L2HGA showing a missense homozygous mutation in L2HGDH gene, and improvement of symptoms with vitamin supplements and levocarnitine.


Assuntos
Encefalopatias Metabólicas Congênitas , Carnitina , Tremor , Humanos , Feminino , Adolescente , Mutação/genética , Vitaminas , Oxirredutases do Álcool/genética
7.
Mol Plant Pathol ; 25(2): e13431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353627

RESUMO

Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.


Assuntos
Acremonium , Oxirredutases do Álcool , Ascomicetos , Hidrolases de Éster Carboxílico , Gossypium , Verticillium
8.
Int J Biol Macromol ; 261(Pt 2): 129870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302022

RESUMO

A novel carbonyl reductase from Hyphopichia burtoni (HbKR) was discovered by gene mining. HbKR is a NADPH-dependent dual function enzyme with reduction and oxidation activity belonging to SDR superfamily. HbKR strictly follows Prelog priority in the reduction of long-chain aliphatic keto acids/esters containing remote carbonyl groups, such as 4-oxodecanoic acid and 5-oxodecanoic acid, producing (S)-γ-decalactone and (S)-δ-decalactone in >99 % e.e. Tailor-made engineering of HbKR was conducted to improve its catalytic efficiency. Variant F207A/F86M was obtained with specific activity of 8.37 U/mg toward 5-oxodecanoic acid, which was 9.7-fold of its parent. Employing F207A/F86M, 100 mM 5-oxodecanoic acid could be reduced into optically pure (S)-δ-decalactone. Molecular docking analysis indicates that substitution of aromatic Phe with smaller residues renders sufficient space for accommodating substrates in a more stable conformation. This study offers an efficient biocatalyst for the biosynthesis of (S)-lactones, and provides guidance for engineering carbonyl reductases toward structurally hindered substrates.


Assuntos
Oxirredutases do Álcool , Oxirredutases , Oxirredutases/genética , Simulação de Acoplamento Molecular , Oxirredutases do Álcool/química , Lactonas , Especificidade por Substrato , Aldeído Redutase
9.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301882

RESUMO

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Assuntos
Aldeído Redutase , Fígado , Ratos , Camundongos , Animais , Humanos , Aldo-Ceto Redutases/metabolismo , Fígado/metabolismo , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Especificidade por Substrato
10.
An Acad Bras Cienc ; 96(suppl 1): e20230382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422345

RESUMO

Plasmodium falciparum is known to cause severe malaria, current treatment consists in artemisinin-based combination therapy, but resistance can lead to treatment failure. Knowledge concerning P. falciparum essential proteins can be used for searching new antimalarials, among these a potential candidate is shikimate dehydrogenase (SDH), an enzyme part of the shikimate pathway which is responsible for producing endogenous aromatic amino acids. SDH from P. falciparum (PfSDH) is unexplored by the scientific community, therefore, this study aims to establish the first protocol for active PfSDH expression. Putative PfSDH nucleotide sequence was used to construct an optimized expression vector pET28a+PfSDH inserted in E. coli BL21(DE3). As a result, optimal expression conditions were acquired by varying IPTG and temperature through time. Western Blot analysis was applied to verify appropriate PfSDH expression, solubilization and purification started with lysis followed by two-steps IMAC purification. Enzyme activity was measured spectrophotometrically by NADPH oxidation, optimal PfSDH expression occur at 0.1 mM IPTG for 48 hours growing at 37 °C and shaking at 200 rpm, recombinant PfSDH obtained after purification was soluble, pure and its physiological catalysis was confirmed. Thus, this study describes the first protocol for heterologous expression of PfSDH in soluble and active form.


Assuntos
Oxirredutases do Álcool , Escherichia coli , Plasmodium falciparum , Plasmodium falciparum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Isopropiltiogalactosídeo/metabolismo
11.
Chembiochem ; 25(5): e202300811, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269599

RESUMO

Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Oxirredutases do Álcool/química , Citocromos c/química , Malato Desidrogenase
12.
Biotechnol Bioeng ; 121(5): 1532-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265115

RESUMO

Carbonyl reductases are useful for producing optically active alcohols from their corresponding prochiral ketones. Herein, we applied a computer-assisted strategy to increase the thermostability of a previously constructed carbonyl reductase, LsCRM4 (N101D/A117G/F147L/E145A), which showed an outstanding activity in the synthesis of the ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. The stability changes introduced by mutations at the flexible sites were predicted using the computational tools FoldX, I-Mutant 3.0, and DeepDDG, which demonstrated that 12 virtually screened mutants could be thermally stable; 11 of these mutants exhibited increased thermostability. Then a superior mutant LsCRM4-V99L/D150F was screened out from the library that was constructed by iteratively combining the beneficial sites, which showed a 78% increase in activity and a 17.4°C increase in melting temperature compared to LsCRM4. Our computer-assisted design and combinatorial strategy dramatically increased the efficiency of thermostable enzyme production.


Assuntos
Oxirredutases do Álcool , Etanol , Ticagrelor , Estabilidade Enzimática , Oxirredutases do Álcool/genética , Temperatura , Computadores
13.
J Inherit Metab Dis ; 47(2): 280-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200664

RESUMO

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Assuntos
Oxirredutases do Álcool , Mitocôndrias Hepáticas , Transaminases , Humanos , Mitocôndrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Fígado/metabolismo , Glioxilatos/metabolismo
14.
J Med Chem ; 67(3): 1914-1931, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38232131

RESUMO

Decaprenylphosphoryl-ß-d-ribose oxidase (DprE1) is a promising target for treating tuberculosis (TB). Currently, most novel DprE1 inhibitors are discovered through high-throughput screening, while computer-aided drug design (CADD) strategies are expected to promote the discovery process. In this study, with the aid of structure-based virtual screening and computationally guided design, a series of novel scaffold N-(1-(6-oxo-1,6-dihydropyrimidine)-pyrazole) acetamide derivatives with significant antimycobacterial activities were identified. Among them, compounds LK-60 and LK-75 are capable of effectively suppressing the proliferation of Mtb with MICMtb values of 0.78-1.56 µM, comparable with isoniazid and much superior to the phase II candidate TBA-7371 (MICMtb = 12.5 µM). LK-60 is also the most active DprE1 inhibitor derived from CADD so far. Further studies confirmed their high affinity to DprE1, good safety profiles to gut microbiota and human cells, and synergy effects with either rifampicin or ethambutol, indicating their broad potential for clinical applications.


Assuntos
Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Oxirredutases do Álcool , Pirazóis/farmacologia , Acetamidas/farmacologia , Proteínas de Bactérias
15.
J Enzyme Inhib Med Chem ; 39(1): 2301768, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38234148

RESUMO

Staphylococcus aureus shikimate dehydrogenase (SaSDH) plays a crucial role in the growth of Staphylococcus aureus (S. aureus), but absent in mammals and therefore a potential target for antibacterial drugs to treat drug-resistant S. aureus infection. In this study, a 3D model of SaSDH was constructed by homology modelling and inhibitors of SaSDH were screened through virtual screening. (-)-Gallocatechin gallate and rhodiosin were identified as inhibitors with Kis of 2.47 µM and 73.38 µM, respectively. Molecular docking and isothermal titration calorimetry showed that both inhibitors interact with SaSDH with a KD of 44.65 µM for (-)-gallocatechin gallate and 16.45 µM for rhodiosin. Both inhibitors had antibacterial activity, showing MICs of 50 µg/mL for (-)-gallocatechin gallate and 250 µg/mL for rhodiosin against S. aureus. The current findings have the potential for identification of drugs to treat S. aureus infections by targeting SaSDH.


Assuntos
Oxirredutases do Álcool , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Mamíferos
16.
World J Urol ; 42(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214752

RESUMO

PURPOSE: Oxalate is an excellent calcium ion attractor with great abundance in the human body, and the liver is the major source of oxalate. The Glycolate oxidase-1 (GOX1) gene is solely responsible for the glycolate and glyoxylate metabolism and produces oxalate. This study has been designed to comprehend the association of genetic variants of the GOX1 gene with the risk of hyperoxaluria and renal stone disease in the Indian population. METHOD: The present study is a candidate gene approach prospective case-control study carried out on 300 participants (150 cases and 150 controls) at Muljibhai Patel Urological Hospital, Gujarat, India. Biochemical parameters, including serum levels of calcium, creatinine, parathyroid hormone, and 24-h urine metabolites, were performed. The genotyping of GOX1 gene variants rs6086287, rs2235250, rs2255183, and rs2294303 was performed using a customized TaqMan assay probe by RT-PCR. RESULT: Parathyroid hormone, serum creatinine, and urine metabolites were significantly elevated in nephrolithiasis compared to healthy individuals. All mutated homozygous genotypes GG (rs6086287), TT (rs2235250), GG (rs2255183), and CC (rs2294303) were significantly associated with a high risk of renal stone disease. Individuals diagnosed with hyperoxaluria and carrying TG (rs6086287), AG (rs2255183), and TT (rs2294303) genotypes have a significantly high risk of renal stone disease. Moreover, haplotype analysis and correlation analysis also confirmed the strong association between genetic variants and nephrolithiasis. CONCLUSION: Genetic variants of the GOX1 genes were associated with renal stone disease. In the presence of risk genotype and hyperoxaluria, the susceptibility to develop renal stone disease risk gets modulated.


Assuntos
Oxirredutases do Álcool , Hiperoxalúria , Cálculos Renais , Humanos , Cálcio , Estudos de Casos e Controles , Cálculos Renais/complicações , Hiperoxalúria/genética , Oxalatos/urina , Hormônio Paratireóideo , Creatinina
17.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184646

RESUMO

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do Álcool
18.
J Biol Chem ; 300(1): 105490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000659

RESUMO

The C-terminal binding protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C terminus. In the mammalian system, CtBP proteins lacking the C-terminal domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ∼100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.


Assuntos
Oxirredutases do Álcool , Proteínas de Drosophila , Regulação da Expressão Gênica , Domínios Proteicos , Proteínas Repressoras , Animais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Drosophila/enzimologia , Drosophila/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Domínios Proteicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/genética
19.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995940

RESUMO

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Assuntos
Oxirredutases do Álcool , Encefalopatias Metabólicas Congênitas , Drosophila melanogaster , Modelos Moleculares , Animais , Humanos , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Drosophila melanogaster/enzimologia , Glutaratos/metabolismo , Mutação , Domínio Catalítico/genética , Especificidade por Substrato/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Ophthalmol Retina ; 8(2): 163-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37714431

RESUMO

PURPOSE: To characterize the largest cohort of individuals with retinol dehydrogenase 12 (RDH12)-retinal dystrophy to date, and the first one from South America. DESIGN: Retrospective multicenter international study. SUBJECTS: Seventy-eight patients (66 families) with an inherited retinal dystrophy and biallelic variants in RDH12. METHODS: Review of clinical notes, ophthalmic images, and molecular diagnosis. MAIN OUTCOME MEASURES: Visual function, retinal imaging, and characteristics were evaluated and correlated. RESULTS: Thirty-seven individuals self-identified as Latino (51%) and 34 as White (47%). Sixty-nine individuals (88%) had Leber congenital amaurosis (LCA)/early-onset severe retinal dystrophy. Macular and midperipheral atrophy were seen in all patients from 3 years of age. A novel retinal finding was a hyperautofluorescent ring in 2 young children with LCA. Thirty-nine patients (50%) had subsequent visits, with mean follow-up of 6.8 ± 7.3 (range, 0-29) years. Eight variants (21%) were previously unreported, and the most frequent variant was c.295C>A, p.Leu99Ile, present in 52 alleles of 32 probands. Individuals with LCA homozygous for p.Leu99Ile (31%) had a later age of onset, a slower rate of best-corrected visual acuity decrease, the largest percentage of patients with mild visual impairment, and were predicted to reach legal blindness at an older age than the rest of the cohort. CONCLUSIONS: By describing the largest molecularly confirmed cohort to date, improved understanding of disease progression was possible. Our detailed characterization aims to support research and the development of novel therapies that may have the potential to reduce or prevent vision loss in individuals with RDH12-associated retinal dystrophy. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures.


Assuntos
Oftalmopatias Hereditárias , Amaurose Congênita de Leber , Distrofias Retinianas , Criança , Humanos , Pré-Escolar , Mutação , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Retina , Oftalmopatias Hereditárias/diagnóstico , Amaurose Congênita de Leber/genética , Cegueira , Oxirredutases do Álcool/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...